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Formation of a Tricyclic Nucleoside
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from Deoxyguanosine via an O°N'-Transposition
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The synthesis of a tricyclic deoxynucleoside by reaction of B-substituted ethanols with an activated deoxy-
guanosine is described. Its formation is rationnalised by an O°-N'-transposition.
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During the course of our studies on crosslinked di-
nucleosides [1-2] we wished to prepare 0%(2-chloroethyl)-
deoxyguanosine (1) which is one of the principal promuta-
genic structures {3] involved in DNA crosslink formation.
In principle the compound should be available through
direct condensation of the activated deoxyguanosine de-
rivative 2 [2] and chloroethanol, using DBU as strong
base.
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Accordingly, the reaction of 2 with chloroethanol (3
equivalents) in presence of DBU (2.7 equivalents) in ace-
tonitrile gave a disilylated nucleoside 3 (70% yield) which
on deblocking (tetrabutylammonium fluoride/tetrahydro-
furan, rt, 1 hour and aqueous ammonia, 60°, 24 hours)
yielded a new deoxynucleosidic compound 6. Using the
usual physical methods, this compound was shown [4] to
be 3<(2-deoxy-B-D-erythro-pentofuranosyl)-5,6,7,9-tetrahy-
dro-9-oxoimidazofl,2-a]purine (Scheme I). The mass spec-
trometric data (FAB*) gave MH! = 294, BH! = 178.

The heterocyclic system of 6 is already known and has
been obtained by the reaction of suitable protected
guanines with glyoxal [5-6].

The probable mechanism of formation of 3 is depicted
in Scheme I1. Reaction of chloroethanol with the activated
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deoxyguanosine 2 would be expected to give 0°%(2-chloro-
ethyl) derivative 1 which could rearrange through the pos-
tulated [7] oxazolidinium intermediate 7 to the
N'42-chloroethyl) derivative 8. Subsequent chlorine
displacement by nucleophilic attack of the N? atom of de-
oxyguanosine would afford the protected 1,/N*-ethanode-
oxyguanosine 3. All attempts to isolate any of the
postulated intermediates were unsuccessful.

However, this mechanism was corroborated by an addi-
tional experiment where we replaced the chlorine leaving
group by a tosyloxy one. The O°(2-hydroxyethyl)deoxy-
guanosine derivative 9 is available from the reaction of
ethyleneglycol with 2 [2] (Scheme I). Tosylation of 9 in the
presence of base again gave the expected transposed
1,N*-ethanodeoxyguanosine compound, isolated as a mix-
ture of silylated nucleosides (4/3:32/68, 70% yield). After
deprotection, each of these afforded the tricyclic deriva-
tive 6. All attempts to chlorinate 9 resulted in unresolved
complex mixtures.

It thus appears that under the conditions described
above the O°{(2-chloroethyl)deoxyguanosine derivative
cannot be isolated by direct substitution of suitably ac-
tivated deoxyguanosine with chloroethanol. The presence
of a good leaving group (i.e. Cl, OTs) on the substituted
O°%-ethyl chain gives rise, through transposition, to the cor-
responding tricyclic nucleoside 6.

The proposed mechanism can partially account for the
mutagenic effect of chloroethylnitrosoureas. It is believed
[7] that the oxazolidinium intermediate 7 generates DNA
interstrand crosslinks, mainly responsible for the cytotox-
icity of nitrosoureas [8]. Alternatively, it can competitively
lead to the formation of an imidazolidinylpurine ring
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whose mutagenicity has been previously reported [9].
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